102 lines
5.3 KiB
Python
102 lines
5.3 KiB
Python
# services/invoice_processor_service.py
|
|
import logging
|
|
from typing import Dict, List, Any, Optional
|
|
import json # Necesario para formatear el JSON de salida
|
|
|
|
# IMPORTAMOS EL TIPO Document y el MessageToJson para la depuración
|
|
from google.cloud.documentai_v1.types import Document
|
|
from google.protobuf.json_format import MessageToJson
|
|
|
|
from .gcp_document_ai_client import process_document_gcp
|
|
from .utils import data_cleaner
|
|
from core.config import settings
|
|
|
|
# --- La función _extract_specific_fields NO necesita cambios en esta fase de depuración ---
|
|
# Puedes dejar la versión anterior, ya que el problema está en los datos de entrada que recibe.
|
|
def _extract_specific_fields(
|
|
document: Document,
|
|
default_confidence_override: Optional[float] = None
|
|
) -> Dict[str, str]:
|
|
# ... (código de la respuesta anterior, no es necesario cambiarlo ahora)
|
|
extracted_data = {field: "Not found or low confidence" for field in settings.REQUIRED_FIELDS}
|
|
default_threshold = default_confidence_override if default_confidence_override is not None else settings.CONFIDENCE_THRESHOLDS["__default__"]
|
|
full_text_lines = document.text.split('\n')
|
|
for entity in document.entities:
|
|
entity_type = entity.type_
|
|
if entity_type not in settings.REQUIRED_FIELDS or entity_type in ['total_tax_amount', 'subtotal_amount']:
|
|
continue
|
|
threshold = settings.CONFIDENCE_THRESHOLDS.get(entity_type, default_threshold)
|
|
if entity.confidence >= threshold:
|
|
raw_text = entity.mention_text.strip()
|
|
if entity_type == 'invoice_date':
|
|
extracted_data[entity_type] = data_cleaner.normalize_date(raw_text) or f"Unparseable Date: '{raw_text}'"
|
|
elif entity_type == 'total_amount':
|
|
contextual_line = None
|
|
logging.info(f"Buscando contexto para '{raw_text}' con la palabra clave 'Total'")
|
|
for line in full_text_lines:
|
|
if raw_text in line and "total" in line.lower():
|
|
contextual_line = line
|
|
logging.info(f"Contexto definitivo para total_amount encontrado: '{contextual_line}'")
|
|
break
|
|
text_to_parse = contextual_line if contextual_line else raw_text
|
|
parsed_amounts = data_cleaner.parse_total_and_tax(text_to_parse)
|
|
total_str = parsed_amounts.get('total_amount')
|
|
tax_str = parsed_amounts.get('total_tax_amount')
|
|
if total_str:
|
|
extracted_data['total_amount'] = total_str
|
|
if tax_str:
|
|
extracted_data['total_tax_amount'] = tax_str
|
|
try:
|
|
subtotal = float(total_str) - float(tax_str)
|
|
subtotal_str = f"{subtotal:.2f}"
|
|
extracted_data['subtotal_amount'] = subtotal_str
|
|
extracted_data['net_amount'] = subtotal_str
|
|
except (ValueError, TypeError):
|
|
logging.error("Error de conversión para cálculo de subtotal.")
|
|
else:
|
|
extracted_data['total_tax_amount'] = '0.00'
|
|
extracted_data['subtotal_amount'] = total_str
|
|
if extracted_data.get('net_amount') == "Not found or low confidence":
|
|
extracted_data['net_amount'] = total_str
|
|
elif entity_type in ['net_amount', 'subtotal_amount']:
|
|
if extracted_data.get(entity_type) == "Not found or low confidence":
|
|
extracted_data[entity_type] = data_cleaner.clean_numeric_value(raw_text)
|
|
else:
|
|
extracted_data[entity_type] = raw_text.replace('\n', ' ').strip()
|
|
return extracted_data
|
|
|
|
|
|
def process_invoice_from_bytes(
|
|
file_bytes: bytes,
|
|
mime_type: str,
|
|
default_confidence_override: Optional[float] = None
|
|
) -> Dict[str, str]:
|
|
""" Orquesta el proceso completo e imprime la respuesta de GCP para depuración. """
|
|
try:
|
|
document = process_document_gcp(
|
|
project_id=settings.GCP_PROJECT_ID,
|
|
location=settings.GCP_LOCATION,
|
|
processor_id=settings.DOCAI_PROCESSOR_ID,
|
|
file_bytes=file_bytes,
|
|
mime_type=mime_type,
|
|
)
|
|
|
|
# --- INICIO DEL BLOQUE DE DEPURACIÓN ---
|
|
# Convertimos la respuesta completa del objeto 'Document' a un JSON legible.
|
|
document_json = MessageToJson(document._pb)
|
|
# Lo cargamos como un objeto Python para poder formatearlo bonito (indentado).
|
|
document_dict = json.loads(document_json)
|
|
|
|
# Imprimimos en el log de la consola con un formato claro.
|
|
logging.critical("\n\n" + "="*20 + " INICIO RESPUESTA COMPLETA DE DOCUMENT AI " + "="*20)
|
|
logging.critical(json.dumps(document_dict, indent=2, ensure_ascii=False))
|
|
logging.critical("="*20 + " FIN RESPUESTA COMPLETA DE DOCUMENT AI " + "="*20 + "\n\n")
|
|
# --- FIN DEL BLOQUE DE DEPURACIÓN ---
|
|
|
|
validated_data = _extract_specific_fields(document, default_confidence_override)
|
|
logging.info(f"Datos finales procesados: {validated_data}")
|
|
return validated_data
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error en el flujo de procesamiento de factura: {e}", exc_info=True)
|
|
raise |