# services/invoice_processor_service.py import logging from typing import Dict, List, Any, Optional from google.cloud.documentai_v1.types import Document from .gcp_document_ai_client import process_document_gcp from .utils import data_cleaner from core.config import settings def _extract_specific_fields( document: Document, default_confidence_override: Optional[float] = None ) -> Dict[str, str]: """ Extrae datos usando una lógica de búsqueda contextual por palabra clave para resolver ambigüedades en el documento. """ extracted_data = {field: "Not found or low confidence" for field in settings.REQUIRED_FIELDS} default_threshold = default_confidence_override if default_confidence_override is not None else settings.CONFIDENCE_THRESHOLDS["__default__"] full_text_lines = document.text.split('\n') for entity in document.entities: entity_type = entity.type_ if entity_type not in settings.REQUIRED_FIELDS or entity_type in ['total_tax_amount', 'subtotal_amount']: continue threshold = settings.CONFIDENCE_THRESHOLDS.get(entity_type, default_threshold) if entity.confidence >= threshold: raw_text = entity.mention_text.strip() if entity_type == 'invoice_date': extracted_data[entity_type] = data_cleaner.normalize_date(raw_text) or f"Unparseable Date: '{raw_text}'" elif entity_type == 'total_amount': # --- LÓGICA DE BÚSQUEDA CONTEXTUAL POR PALABRA CLAVE --- contextual_line = None logging.info(f"Buscando contexto para '{raw_text}' con la palabra clave 'Total'") for line in full_text_lines: # La línea debe contener el texto del importe Y la palabra "total" if raw_text in line and "total" in line.lower(): contextual_line = line logging.info(f"Contexto definitivo para total_amount encontrado: '{contextual_line}'") break # Si no encontramos una línea contextual, usamos el texto original como fallback text_to_parse = contextual_line if contextual_line else raw_text parsed_amounts = data_cleaner.parse_total_and_tax(text_to_parse) total_str = parsed_amounts.get('total_amount') tax_str = parsed_amounts.get('total_tax_amount') if total_str: extracted_data['total_amount'] = total_str if tax_str: extracted_data['total_tax_amount'] = tax_str try: subtotal = float(total_str) - float(tax_str) subtotal_str = f"{subtotal:.2f}" extracted_data['subtotal_amount'] = subtotal_str extracted_data['net_amount'] = subtotal_str except (ValueError, TypeError): logging.error("Error de conversión para cálculo de subtotal.") else: extracted_data['total_tax_amount'] = '0.00' extracted_data['subtotal_amount'] = total_str if extracted_data.get('net_amount') == "Not found or low confidence": extracted_data['net_amount'] = total_str elif entity_type in ['net_amount', 'subtotal_amount']: # Evitamos procesar estos campos directamente si ya los hemos calculado if extracted_data.get(entity_type) == "Not found or low confidence": extracted_data[entity_type] = data_cleaner.clean_numeric_value(raw_text) else: extracted_data[entity_type] = raw_text.replace('\n', ' ').strip() return extracted_data def process_invoice_from_bytes( file_bytes: bytes, mime_type: str, default_confidence_override: Optional[float] = None ) -> Dict[str, str]: """ Orquesta el proceso completo. """ try: document = process_document_gcp( project_id=settings.GCP_PROJECT_ID, location=settings.GCP_LOCATION, processor_id=settings.DOCAI_PROCESSOR_ID, file_bytes=file_bytes, mime_type=mime_type, ) validated_data = _extract_specific_fields(document, default_confidence_override) logging.info(f"Datos finales procesados: {validated_data}") return validated_data except Exception as e: logging.error(f"Error en el flujo de procesamiento de factura: {e}", exc_info=True) raise